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SUMMARY 

A detailed analysis of steady autorotative vertical descent of a 
helicopter is made, in which the effect of considering induced velocity 
constant over the disk is examined. The induced velocity is first 
considered constant, then variable over the disk; end the results are 
compared for a typical helicopter. Although considering-the induced 
velocity constant over the disk causes considerable error in the load 
distribution along a blade, the revolutirms per minute of the rotor and 
rate of descent are found to be negligibly affected for small angles of 
blade pitch. For high pitch angles, where blade stalling becomes 
important, the theoretical difference between blade load distributions 
obtained by considering induced velocity constant and variable may be 
expected to be enough to cause quantitative disagreement between the 
constant induced-velocity theory and experiment. 

A brief study is made of the stability of autorotation, considering 
the effect of blade stalling. At small values of blade incidence, 
stability of the autorotation will be adequate, and blade stalling can 
be neglected. As the blade incidence increases, the risk of an upgust 
causing the blades to stall and thsrotor to stop becomes acute. 

INTRODCCTION 

This report is the result of the first part of a broad program to 
analyze the transient motions of a helicopter, which occur in the various 
phases of flight following power failure. As such, it is proper that it 
be concerned with steady-state vertical flight without power, or steady 
autorotative descent. 

The basis for the analysis is contained in a paper by Glauert 

iZ:;Z::C:‘i 

although a somewhat similar approach was made by Bennett 
There is no theory adequate to analyze the states of a 

rotor in autorbtative vertical descent, end recourse must be made to 
an empirical relationship between the velocity of descent and total flow 
through the rotor disk. As more experimental evidence becomes available, 
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it will be possible to modify the necessary empiricisms to improve the 
agreement between analysis and fact. 

. 

This work was conducted at-Princeton University under the sponsor- 
ship and with'the ftiancial assistance of the National Advisory Committee 
for Aeronautics. 

SYMBOLS 

Physical Quantities 

w 

b 

R 

r 

x = r/k 

C 

‘e 

blad-ection solidity ratio bc 
UX 0 liR 

u 

8 

80 

*1 
8 

P 

gross weight, pounds 

number of blades per rotor 

blade radius, feet 

radial distance to blade element, feet 

blade-section chord, feet 

equivalent blade chord, feet 

rotor solidity ratio 

blad4secticm pitch angle from zero lift, radiw unless 
otherwise stated 

blade pitch an&$e at hub 

linear twist of blade 

disk area, square feet 

mass density of.-air, slugs per cubic foot 
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AiHlow Parameters 

. 

V 

Vv 

R 

v 

LX 

u 

U 

true airspeed of helicopter thong flight path, feet / 
per second 

vertical cowonent of V (positive down) 

rotor angular velocity, radians per second 

induced inflow velocity at rotor (always positive), 
feet per second 

inflow ratio at a blade element vv - v _ 9 
fiR > nR 

resultant velocity of the air relative to a blade 
element, perpendicular to blade-span axis, feet 
per second 

component of U perpendicular to axis of no feathering 
(positive up towsrd rotor) 

blade-section angle of attack from zero lift, radians 
unless otherwise stated 

inflow ratio with induced velocity assumed constant 

over the disk 

average value of UP over disk (when induced velocity 
is assumed constant over the disk), feet per second 
(positive up) 

Blade-Element Aerodynamic. Characteristics 

cz section lift coefficient 

% section profileag coefficient 

SO,S~,$,~~ coefficients in power series for cd. as a function 
of c$ (ca, = 80+61(++62t+~+83C+~+. . .) 

w Qo corrected to account for friction torque 

60 corrected to account for friction torque 
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BO 

a 

%QfAX 

l! 

& 

%- 

CT 

CQ 

increment in 60 to account-for friction torque 

(60' = 60 + A&)) 

Qf = -g bm4(A60)~01 c&x . 
c. 

C&‘. = 60’ 

slope of lift 

"3+3 +. .T 

curve for-blade, per radian dcz 
( > G 

where 

msximum section lift-coefficient 

blade station inboszd of which blade is stalled 

lift coefficient of stalled blade section 

profile-drag coefficient of stalled blade section 

section thrust coefficient based on resultsnt 

velocity 

section thrust coefficient based on descending 

velocity 

Rotor Aerodynaxk Characteristics .- 

rotor thrusty pounds 

rotor aerodynaslic torque, pound-feet 

rotor friction torque, pound-feet (may include torque 
to drive auxiliary mechanisms) 

rotor thrust coefficient T 
wR~(S-~R)~ > 

rotor torque coefficient @Q=Z&F) 

c 
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. 

. 

. 

F 

5 

rotor thrust coefficient based on resultant 

rotor thrust coefficient based on descending 

velocity 

. 

Miscellaneous 

constant in empirical relation between f . 

and F 

A!?& 
p2 8~ 

16319 
p3 = &Q 

X 

Cl = - 2CTfi2 2 0 T 
au =aE 

1 
c2 C&dX 

c3 =$ s 
1 cx dx 

0 2cQ a2 c4 =Q 
c5=-+i 0 s 1 cx3(6() ’ + 618 + s282)dx 

11 
c6 = ac2 - - 

ce s 
CX2(Sl + 2@3)dx 

0 

. 

c7 = cj(a - 62) 
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C~JC~~C~JC~~CO coefficients in power series for 

( 
2cQ 

zg as a function 

OfX -= 
u co + ClX + c2As + c3’13 + c&x4- > 

The Relation between &and& 
f F 

It was shown by Lockin-reference 3 that, for small values of 
resultant axial air velocity u through a rotor disk, the vortex and 
momentum'thsories sre inapplicable. A relationship between u and the 
vertical component of descending velocity Vv was found experimentally 
and presented in terms of nondimensional coefficients F and 7 by 
Glauert in reference 1. The relatia between F and F given by 
Glauert is given in figure LoFthis report (the solid line). The upper 
branch of the curve is for the windmill brake state, u > 0 (in which 
the rotor operates as a windmill, the average flow through the rotor being 
in the direction of the free stream); the lower branch Is for the vortex 
ring state, u < 0 (in which the actual flow through the rotor is turbu- 
lent, at some places being in the direction of the free stream, and at 
some against. On the average, however, the flow through the rotor is 
against the free stream). 

In order to simplify the analytical treatmen2, and because there is 
some doubt as to the exact relationship between f and F, it is assumed 
in this report that the relationship is of the form 

1 -= 2+Kl 
F F 

(1) 

which is illustrated in figure 1 for K = 1 and 2. The upper branches 
(corresponding to-the plus sign) are again for the windmill brake 
state, u > 0; the lower (for the minus sign) are for the vortex ring 
state, u co. 

In this report, K will usually be taken as 2, so that, In 
hovering 1 

( ) 
- = 0 , 
f 

-& = 1, to agree with the vortex theory which is known 
F 

to be reasonably accurate in its application to hovering: The -effect of 

the different assumptions for &against 
f 

-5 on descending velocity in 
F 

steady autorotation is presented in figure 2, for a sample helicopter 
(see BAMPLF, CALCULATIONS) with vsrious blade incidences. It is seen 
that the differences are not large. 

I 
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Derivation of the Equations 

It is now assumed that the same relationship that exists between 7 
and F, for the rotor, exists as well between the corresponding coeffi- 
cients f and F for any blade section, where, however, f and F are 
variable over the disk. 

Considering now sny blade section, from the definitions of f and F, 
there can be written 

f -= P2 
F -v, 0 

and combining equations (1) and (2), 

2 
2f=lT 

f? v, 

(2) 

(3) 

where, in equation (3) and hereafter, the upper sign corresponds to the 

upper branch of $ against $ (the windmill brake state) and the lower 
sign to the lower branch of (the vortex ring state). 

Substituting in equation (3) the definition of f, and, since only 
vertical flight is concerned, dropping the subscript v on Vv, 

dT -= 
dx 

2rrox.$ 
( 
v2 "Kup2 

> 

From blade-element considerations, 

(4) 

(5) 

. 
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Combining with equation (4) and letting 

v2 4 Pl= - ( > ~57 aaxe 

aaX P2 = - 8~. 

P3 = 16K8 '& 
X 

there results, for the two states 

(6) 

x 2 + 2P$x T W2P3(Pl - x) X =o (7) 

For the windmill brake state, Up > 0, Ax > 0, and the solution 
must be 

AX = -p2 1 - J 1 + P,(Pl -x) 1 (8) 
and it must-be that x < pl. 

For the vortex ring state, Up < 0, Xx < 0, and the solution 
must be 

Lx = P+-Jl-P3(P1-x)-J . W 

and it must be that x > pl. 

It is apparent then, that blade elements inboard of station x = pl 
are in the windmill brake stat-e where the upper branch of $ against $ 
applies, and that blade elements outboard of station x =pl are in the 
vortex ring statey where the lower branch of $ against $ applies. At .. 
station x = pl, Xx = Up = 0. 
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For steady autorotation, the thrust and torque equations are we= 
known: 

W =T=gbaQ2R3 
Jo - ’ 

(9) 

and 

* + El8 + dx - 
s,’ cAx(sl + 2fa2)ax - s,’ cS2x)L,2k 1 (10) 

in which the drag coefficient is represented by the series 

% ’ = 60’ + “p& + E2%2 

The solution of these equations involves the determination, by 

trial snd error, of the ratio & such that the computed distribution 
of A, (equations (8) and (8a)) satisfies the torque equation. 

, 
Solution tith Variable Induced Velocity 

Steps in the solution of equations (8), (g), and (10) are outlined 
below: 

(1) Assume a value for a&,.. or compute an approximate value 
by assuming induced velocity constant over the disk by the method 
given in the following section. 

(2) Choose a number of stations, such as x = 0.2, 0.4, 0.6, 
0.8, and 1.0, and calculate at each station the values of pl, p2, 
and P 3 from equations (6). 
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(3) Calculate A, at each station, fromeq?iation (8) 
where x < pl, or from equation (8a) where x 3 pl. 

(4) Substitute the values of Lx intu equation (10) and 
evaluate the integrals graphically or by Simpson's rule. 
Equation (10) must be satisfied. If it is not, a diffwrent 
value of & should be assumed, and steps (1) through (4) 
repeated until the torque is substantially zero.. Starting with 

V the value of CR from constant induced-velocity considerations 
will lead usually to an accurate determination of p for zero 

RR 
torque in three trials. v The final value oFfix willusually be 
between 0 and 10 percent larger then that for constant induced 
velocity. 

(5) Having found the value of fl& for zero torque, by 
trial and error in step (4), substitute the appropriate values 

into equation (g), and evaluate the integral graphically - of l.x 
or by Simpson*6 rule. Solve equation (9) for a. 

(6) fiorn the vtiue of & from step (4), and Sa from 
step (5), solve for the descending velocity V. 

Solution with InducedVelocity Assumed Constant over the Disk 

If it-is assumed that the induced velocity is constant over the 
disk, then anapproximate solution of the above equations can readily 
be obtained analytically. In this case Lx is a constant X; and the 
thrust and torque equations can be written 

and 

where 

c1 = sr2 
( c2 + c39 

'1 aa 
= 3 $22 = ,2&&z) 

(11) 

(13) 

(13a > 
r 

1 
cg = g C&%X 

e 
JO 
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. 

s 

I 

c3 =$ cx dx 

0 

2cQ n2 
c4 = Q 

1 c5 =-& s cx3 ( So’ + El8 + s,e2 ) dx 
0 

s 

1 

'6 = ac2 - $- cx2 dx 
e 0 

c7 = c3p - 62) 

(13b 1 

(13c) 

(13d) 

(134 

(13f) 

In steady autorotation, the torque equals zero 
equation (12) reduces to 

(04 = o), so that 

C$’ + C@ + C5 = 0 (14) 

Since, with induced velocity constant, it must be assumed that the 
rotor is in the windmill brake state (h. > 0), -the solution must be 

The following sequence may then be set down for solving the problem 
under the assum@ion of constant induced velocity: 

(1) Calculate the coefficients cl, c2, c3, c4, c5, C& 
and c 7 from equations (13) through (13f) 

(2) Calculate A, from equation (14a) 

(3) Calculate a from equation (ll) 
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(4) Calculate u from the definition of ;L (u = ~,CIR) 

(5) Calculate p from its definition F = 
( 

T 
2lcpR2u2 ) 

(6) Calculate F from equation (l), using the plus sign 
(for the windmill brake state) 

(7) IWorn the definition of ?, calculate V 
(v= Liz> 

Stability of Autorotation 

Blade element.- Considering, for the moment, the stability of a 
solitsry blade element in autorotative vertical descent, the autorotation 
will be said to be stable, if, following a disturbance from the equilib- 
rium..condition of torque equal to zero, the blade element tends to 
return trrths same equilibrium state. If the disturbance made the torque 
decelerating, say, then 

(1) Q would decrease 

(2) m and v would decrease 

(3) v would increase 

(4) Hence Xx would increase 

If tha slope of dQ against Lx, y> were positive (torque becoming 
X 

more autorotative for an increase in Lx), then the equilibrium (dQ = 0) 
would tend to be restored, and the autorotation would be stable. 

Conversely, WQ if .& < 0, the autorotation would be unstable. 
X 

Rotor.- The criterion for the stability of the rotor as a whole, 
by extension of that for the blade element, is 

, 

Although the evaluation of the above integrti is prohibitively 
difficult considering vsriable induced velocity, under the assumption 
of constant induced velocity over the disk, it reduces to 
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It may be noted that for X = 0, the torque would be negative 
(decelerating) for any pitch 8, 

aQ 
so that, at the first trim point (Q = 0) 

on a curve of Q against h, x must be positive. Therefore, for infin- 
itesimal disturbances from this trim condition, the autorotation would 
be stable. As x increases, however, beyond the first trim point, the 
angle of attack of the blades increases, until the blades stall, and the 
curve of Q against X drops sharply through a second trim point 

& where x < 0, and where the autorotation would be unstable. 

Above a critical value of blade incidence the curve for Q against h 
does not intersect the Q = 0 axis. Hence in this case there is no trim 
point, and no autorotation is possible. 

Below the critical blade angle, where both trim points exist, au-t+ 
rotation can only be steady at the first, stable trim point. The slightest 
disturbance from the unstable trim state would either cause the rotor to 
revert to the first, stable trim state, or stop autorotating completely. 

If the momentary increase in ;L, due to an upgust hitting a rotor 
in stable autorotation at the first trim point, were sufficient to 
increase X beyond the second trim point, the autorotation would stop. 
If the increase in h. were less than the difference in the two trim 
points, then the autorotatian would return to the steady stable state 
at the first trim point. 

In order to investigate the critical blade angle above which auto- 
rotation is impossible, and, for those blade angles where steady autc+ 
rotation can exist, to predict the value of an upgust which would cause 
the autorotation to stop, it is necessary to include the effect of blade 
stalling in the expressions for drag and lift coefficients as functions 
of angle of attack. For this purpose, it is assumed that, below the 
stall, the drag coefficient is given by a cubic in angle of attack, 
instead of the usual quadratic, and that, above the stall, the drag and 
lift coefficients are constant at values denoted by ca, and czs, 
respectively. Thus, below the stall, 

Qot = 60’ + 61% + 82cp + f53%-3 

The blade station at which the stall begins is denoted xs, and is 
given by 

. czmax = a(63 + $) O-6) 
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Or 

x xs = 
chlla -- 8 a 
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For blades of constant chord, the torque -equation is 

s 

xS 

cp*dx - 

0 1.0 s [ x3 60’ + 61 (e + !g + 8*(8 + g)’ + 63(e + ;y]ti - 
%I 

s 

xS 

6,x3& (17) 
0 

As written above, the equation applies for 0 < xs < 1.0, which 
is the range of interest here. For 0 = Constant (no twist), integrating 
equation (17) and substituting from equation (16a), 

*GQ -= 
a C&k4 + c# + c*x2 + Glh. + co (18) 
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where 

c4 = 4r2; d4 [pot - 6s) + $8 + 62G2 + 6383 + 1 
3(-k -- ) 3 I 61 + cz,) + (282 - a.)e + 3s3e2 1 + 

2e2L -- 8 ;* p* - a> + a 3+e] 'cc22 -- 8 
a 

) 

C2 = 5 a - 62 - 3s3e ( > 
cl = $ [al + (a - 2s2)e - 36,e*] 

s 

co = - $ ( 60' + tjle + s2e2 + s3e3 > 
The values of X for Q = 0, 

points can best be investigated by 

function of h. for various values 

aQ and the slope, z at tho.s;QtrIm 

calculating end plotting (J as a 

of 8. 

. 
The physical properties for the helicopter chosen for the ssmple 

calculations exe 86 follows: 

, 
W = 2700 pounds 

b 3 s 
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R = 20 feet 

c = 1.25 feet (constant) = ce 

a = 5.6 per radian 

% 
= 0.0087 - o.o216a, + 0.4%~ 

Variable Induced Velocity 

For illustrative purposes, & linear twist of -6O is chosen 
with eo.7m = 4O, so that, in degrees, 

8 = 8.5 - 6~ 

or, in radians, 

8 = 0.1483 - 0.1048 

A value of- of 0.0750 is assumed. 

Performing steps (1) through (3) in the section entitled "Solution 
with Variable Induced Velocity," the variatim of Lx with x is 
computed. For example, for x = 0.6, by equations (6), 

Pl = 0.788 

p2 = o.mog 

p3 = 8.20 

Since x < pl, using equation (a), 

AX = 0.0124 

Graphical integration of equation (lo), using the variation of Xx 
computed, gives a net area for Q very nearly zero. Therefore t&e value 
of I 

( > m Q+ 
is sufficiently accurate. 

Graphical Integration of equation (9) -gives 

T 

5 baSr2R3 
= 0.0385 
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whence n = 20.9 radians per second. Then 

v= 
6J 
v nR = 31.3 feet per second 

At blade station x = 0.6, the blade angle of attack is 

% =e+g = 8.5 - 

cons t&nt 

6(0.6) + ce 57.3 = 6.1' 

Induced Velocity 

For the same pitch and lineas Mat, using equations (13) 
throJ43h 03fL 

Cl = 13.50 =-0.00226 
3 

c2 = 0.0233 '6 = o.llgo 

c3 
= 0.50 

morn equation (14a), 

From equation (IL), 

n = 

u= 

i;;= 

9 = 2.60 

x = 0.0145 

21.0 radians per secclnd 

XC2R= 6.09 feet per second 

T 

gi$T 
= 12.2 

Born equation (1), using the plus sign and K = 2, 

1 
-= 2.16 
F 

whence 

= 31.2 feet per second 
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Atblade station x = 0.6, the angle of attack is 

. t+=t?+ k = 8.5.- 6(0.6) + 57.3 o~“~4’ = 6.3' . 

Stability of AutorotatFan 

For this calculatim the cubic dreg paler is assumed, 

%I1 = 0.0087 + o.o6ooa, - 1.28ar2 + 8.0+.3 
c 

corresponding to 

601 = 0.0087 

61 = 0.0600 

62 = ~28 

63 = 8.00 

Values pertinent to stalling are taken to be 

%.m = 1.20 

Cl, = 0.60 

6s = 0.250 

Values ofthe coefficients C4, C3, C2, Cl, and- Co are computed 
2cQ for various values of 8, and the variation of d with X is computed. 

Although these cticulations are not-given in d&ail, the res 
!e 

ts are 
presented in figure 3. The dashed lines are the.curves of CQ Q against X 
computed by equation (12) in which blade stalling is neglected. They 
are shown to indicate the effects of blade stalling, and to indicate---the 
ranges of )I and 8 where blade stalling may be neglected. 
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DI8CXSSION OF CALCULATIONS 

Comparison of Variable and Constant Induced-Velocity Theories 

Calculations for rate of descent V and rotor speed C for the 
sample helicopter (see SAMPI CALC7JLATIONS) have been csrried out for 
different amounts of blade twist, by both constant and variable induced- 
velocity methods. The results, shown in figure 4, indicate that, for 
performance calculations, the results by the two methods sre practically 
indistinguishable. 

The variations of angle of attack along the blade, as computed for 
the above cases by the two methods, ere plotted in figure 5. Although 
the agreement is good for negative twist, it is clesr that the theoretical 
blade load distribution is, in general, considerably affected by the 
asswtion of constant induced velocity. 

Stability of Autorotatian 

The vsriation of 2cQ 7 against X for various values of 8, for the 
sample helicopter, is given in figure 3. The blade drsg polar used for 
these calculations is compared with the quadratic expression (used in 
the other calculations) in figure 6. It will be noted that the two sre 
essentially identical at low lift coefficients, but that at higher lift 
coefficients a more realistic increase in drag is given by the cubic 
expression used. Also, the stell is considered. 

Consideration of figure 3 shows that for small blade incidence, 
the second; unstable trim point is far enough from the stable one that 
even a strong upgust would not cause X to increase beyond it. At 
high values of incidence, however, the two trim points are so close 
together that a rotor in stable autorotation at the first point might 
become unstable, and stop autorotation, if hit by even a weak upgust, 
with its attendant momentsry increase of X. 

There is, of course, a value of 8 (about 8.8O, from the fig.) 
above which there is no trim point, and therefore autorotation is not 
possible. It is worth noting that using the quadratic drag polar, in 
which stall is neglected, not only results in failure to predict the 
second, unstable trim point and its attends& danger at high values 
of 8, but would also indicate that autorotation would be possible at 
enyvalueof 8. It is apparent, then, that the blade stall csnnot be 
neglected at high incidence. 

In figure 7, values of X for the first trim points are plotted 
against 6, as read from the curves of figure 3. For comparison, values 
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of ;x. computed by the method given in the section entitled "Solution 
with Induced Velocity tisumed Constant over the Disk," using the quad- 
ratic drag polar and neglecting the stall, are also shown. For small 
values of 8, the difference is very slight, indicating that blade 
stalling can safely be neglected for performance calcuiatiana at low 
incidence. 

It should be noted that the results obtained from the study of- 
stability of autorotation should be considered purely qualitative. The 
most important reason is that the constant induced-velocity theory used 
fails to predict-accurately the angle-of-attack distribution along the 
blade, and hence cannot accurately account for the all~i~ortant distri- 
bution of stsll at high angles of incidence where the stability is 
questionable. To be confident of quantitative results it would first be ._._ _._. .-.-.. 
necessery, therefore, to predict accurately the actual induced-velocity 
distribution. It would also be necessary to represent accurately the 
drag cwve at angles above the stall, end to account for Reynolds number 
effect on drag and maximum lift at verious blade stations. 

CONCLUSIONS 

Although they are somewhat limited by the assumptions used in the 
theory on which they sre based, the following conclusions seem justified: 

1. Rate of descent and rotor speed sre not criti&ily affected by 
different assumptions for rotor thrust coefficient based on descending 
velocity f against rotor thrust coefficient based on resultant 
velocity %' in the range of conditions encountered in steady autorotative 
descent.-- 

2. For the conq?utation of rate of descent and rotor speed, constant 
induced-velocity theory may be used at low incidence where stalling may 
be neglected. At high incidences, blade stalling must be accounted for 
in order to obtain even qualitative agreement between theory and practice. 
For quantitativeagreement in this case, it would probably be necesssry 
to use a vsriable induced-velocity theory. 

3. At high values of incidence, although the autorotation may be 
stable for infinitesimal disturbances, a finite disturbance such as an 
upgust might well stall enough of the blades tuputthe rotor in an 
unstable regime where it would cease autorottlting. There is little danger 
of this, at least for aerodyns.micall..y clean blades, allow incidence. 

4. For the sample design studied, the constant induced-velocity 
theory, accounting for blade stalling, indicates a critical value of 
blade incidence of about 8.8O, above which steady autorotation would not 
be possible. 

Princeton University 
Princeton, N. J., Msy 4, 1948 
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6 

1 2 3 
Thrust coefficient based on resultant air velocity 

through rotor, L 
F 

Figure l.- Empirical relations between descending velocity V, and 
resultant air velocity through the rotor UP. 

. 
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Figure 2. - Ef$ect of djfferent empirical relations for induced velocity on 
descending velocity in steady autorotation. Constant induced-velocity 
theory. No blade twist or taper. c - 13.50; 

‘d, = 0.0087 - 0.0216 ur + 0.40 avi.- 
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